YOU ARE AT:EnergyPNNL highlights use of deep learning to reduce energy use in buildings

PNNL highlights use of deep learning to reduce energy use in buildings

Deep learning can be used for reducing energy use in buildings across the U.S. according to Pacific Northwest National Laboratory?(PNNL).

PNNL is one of the United States Department of Energy national laboratories, managed by the Department of Energy’s (DOE) Office of Science.

PNNL noted that American buildings consume roughly 40% of U.S. energy, much of which is expended on heating, cooling, and ventilation. Enhanced control methods can help reduce energy consumption. Model Predictive Control (MPC) has shown potential for substantially reducing energy use in buildings. However, it has not been widely adopted due to a number of implementation challenges.

Recently, PNNL has demonstrated that deep learning can be used to overcome some of these challenges, paving the way for wider adoption of MPC in buildings.

?For successful application in buildings, the method must be less expensive and easier to implement, and that has been the focus of our work,? said?Jan Drgona, a PNNL postdoctoral research associate.?

According to the PNNL, MPC optimizes control over a receding time horizon, and in a building the method may optimize control for the next 24 hours in 15-minute intervals. MPC would use a model of the building to evaluate its performance over the next 24 hours under different control strategies for fixed occupancy and weather assumptions. The control settings for the first 15 minutes are implemented, the building?s response is measured, and the process is repeated with updated initial conditions and weather predictions.

PNNL also highlighted that a critical part of MPC is the model itself. MPC was initially used to optimize industrial chemical?processes through?physics-based models. Physics-based MPC has also proven effective in buildings. In fact, field testing conducted by KU Leuven University in an office building in Belgium showed energy savings of up to 50%. MPC also improved thermal comfort in the building by keeping the temperatures closer to prescribed bounds,?which can improve occupant productivity and well-being.

Deployment of MPC in a large portion of the building stock has not been possible because of high installation costs. Every building is unique and requires its own custom physics-based model. Physics-based models are computationally expensive, limiting the number of control strategy alternatives that can be explored and often requiring dedicated hardware.

A research team of Jan Drgona, Draguna Vrabie of PNNL, and Lieve Helsen of KU Leuven has developed an approach that overcomes the computational challenges of MPC. The team used physics-based MPC to train deep learning neural network models.

The neural networks models yield control actions that closely approximate those produced by physics-based MPC but do so much more quickly while using significantly less computing power. In lay terms, the researchers are teaching the cheap apprentice (neural network) to imitate the behavior of the much more expensive expert (physics-based MPC).

?We end up with a high-performing intelligent controller with just a fraction of the execution cost of classical Model Predictive Control,? Drgona said.

He added, ?There is much work that remains to be done to achieve robust, scalable methods applicable to large-scale building systems. By applying these methods, we are on track to reduce engineering costs and achieve a generic solution that is broadly available to the building control community.?

ABOUT AUTHOR

Juan Pedro Tomás
Juan Pedro Tomás
Juan Pedro covers Global Carriers and Global Enterprise IoT. Prior to RCR, Juan Pedro worked for Business News Americas, covering telecoms and IT news in the Latin American markets. He also worked for Telecompaper as their Regional Editor for Latin America and Asia/Pacific. Juan Pedro has also contributed to Latin Trade magazine as the publication's correspondent in Argentina and with political risk consultancy firm Exclusive Analysis, writing reports and providing political and economic information from certain Latin American markets. He has a degree in International Relations and a master in Journalism and is married with two kids.